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Abstract. Accurate estimates of future land carbon sinks and thus the remaining carbon budget to achieve the Paris climate
goals requires rigorous modelling of the carbon sequestration potential of the terrestrial biosphere. Estimating the terrestrial
carbon budget requires an accurate understanding of the interlinkages between the land carbon and nitrogen cycles, yet coupled
carbon-nitrogen cycle models exhibit large uncertainties. Leaf chlorophyll, chlje.¢, is an indicator of the leaf nitrogen content
stored within photosynthetic nitrogen pools and is central to the exchange of carbon, water and energy between the biosphere
and the atmosphere. In this work, we harness an advanced remote sensing (RS) chlje,¢ product to evaluate a terrestrial biosphere
model, QUantifying Interactions between terrestrial Nutrient CYcles and the climate system (QUINCY), which explicitly
models chlje,r. We focus on comparing the spatial and seasonal patterns of modelled and observed chlje,¢, and then further
assessing if modelled leaf area and productivity agree with a RS leaf area index product and in-situ eddy covariance-based
gross primary production, respectively. In addition, we conduct additional simulations to test two alternative formulations
of leaf-internal nitrogen allocation within QUINCY. Our analysis over a globally representative set of locations reveals that
QUINCY chlje,s magnitudes are mostly in line with the RS chlje,s values. However, QUINCY chlje,¢ tends to show a narrower
numerical range compared to RS for specific ecosystem types, such as grasslands. While the seasonal cycle of QUINCY
chljeo¢ mostly corresponds well to the observations, for many deciduous forests, the increase in QUINCY’s chlje,¢ predictions
in spring and the decrease in autumn were delayed compared to observations. Our results also show that compared to the
original leaf nitrogen allocation scheme of QUINCY, the revised scheme produced a more reasonable sensitivity of gross
primary production to increases in chlje,¢. Our study shows the value of RS products linked to N cycle that will be useful in

both C and N modelling, and paves way for closer linking of RS and TBMs.
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1 Introduction

The terrestrial biosphere currently takes up approximately one-third of the anthropogenic fossil fuel carbon emissions (Friedling-
stein et al., 2023), and thereby playing pivotal role in slowing global climate warming (Nabuurs et al., 2022). The C cycle is

closely linked to the terrestrial nitrogen (N) cycle, as photosynthesis and plant growth require sufficient nutrient supply. Land

carbon uptake is limited by nitrogen in many ecosystems (LeBauer and Treseder, 2008; Fisher et al., 2012; Tamm, 1991; Vi-

tousek and Howarth, 1991; Ziehn et al., 2021), however, the magnitude of this limitation remains unclear. This highlights the

need to better understand the coupled C and N cycles (Seiler et al., 2024), as future changes in climate will also affect these

cycles (Arora et al., 2020).

Terrestrial biosphere models (TBMs) can be used to simulate coupled C and nutrient cycles and land-atmosphere interactions
under a changing climate. In recent decades, TBMs have taken in an increasing number of factors affecting plant photosyn-
thesis, such as nutrient limitation (Blyth et al., 2021). Whilst Kou-Giesbrecht et al. (2023) reported that TBMs are capable of
reproducing the historical terrestrial C sink with a sufficient level of performance, uncertainties persist. For example, models
have varying methods to represent the N-limitation of photosynthesis, which can lead to different results for plant productivity
(Medlyn et al., 2015). TBMs use different modeling approaches to represent N limitation of photosynthesis and the effect of
N availability on leaf N. Leaf N can be obtained directly from soil N availability by using a fixed parameter or with flexible
parametrization using leaf C:N ratios (Thomas et al., 2015). Increasing model complexity can thereby also introduce further
uncertainties into the estimates of the carbon sink (Fisher and Koven, 2020; Famiglietti et al., 2021), which is reflected in
significant divergence of N pools and fluxes predicted by the current generation of TBMs (Kou-Giesbrecht et al., 2023). In
addition, the modelled responses of photosynthesis to elevated atmospheric carbon dioxide (CO3) or to N deposition vary
between different TBMs, requiring a better understanding of the N cycle (Davies-Barnard et al., 2020; Arora et al., 2020;
Meyerholt et al., 2020; Zaehle et al., 2014). It is therefore important to better constrain the nitrogen dynamics in these models.

One of the major sources of uncertainty in modeling the land carbon sink with TBMs is the uncertainty in estimating the leaf
photosynthetic capacity and photosynthetic rate (Bonan et al., 2011; Rogers et al., 2017). Leaf chlorophyll (chlje.¢) is intrinsi-
cally related to plant photosynthesis, due to its role in generating biochemical energy for the carboxylation reactions within the
Calvin-Benson cycle, through the harvesting of solar radiation. Previous work has demonstrated that leaf chlorophyll content
is a strong proxy for photosynthetic capacity (Croft et al., 2017; Lu et al., 2020; Luo et al., 2021). The maximum carboxylation
rate at the 25 °C reference temperature (V(max),25) represents the limitation of photosynthesis by the Rubisco enzyme, which
is the main regulator in light-saturated photosynthesis (Houborg et al., 2013). Due to the investment of N in chlje,¢ molecules
and an optimal N investment strategy to ensure close co-ordination between light-harvesting and carboxylation reactions, there
is a close relationship between leaf N and chlj,¢ (Sage et al., 1987; Evans, 1989). In-situ observations of chlje,s can there-
fore be used to improve the parametrization of physiological schemes within TBMs to improve GPP estimates (Luo et al.,
2018, 2019; Lu et al., 2022; Thum et al., 2025). However, many of the contemporary TBMs do not represent chlje,¢, and the
widely used version of the FvCB model (Farquhar et al., 1980) for photosynthesis description does not explicitly take into
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account the role of chlj,s in photosynthesis. In addition, the majority of TBMs only consider total canopy N and its vertical
distribution (Krinner et al., 2005; Best et al., 2011; Clark et al., 2011).

In addition to in-situ observations, remote sensing (RS) of the Earth’s vegetation provides comprehensive data for evaluating
and validating TBMs. Leaf nitrogen is difficult to retrieve directly from RS observations (Farella et al., 2022), in comparison
to chljeos Which is more feasible to derive remotely (Croft and Chen, 2018), due to the presence of large chlorophyll absorption
features in visible wavelengths. The advantage of using remotely sensed chlje,s is its global and seasonal coverage and relatively
long time span, compared to in-sifu observations. Similarly as in-situ observations, RS chlje,¢ can be harnessed to improve the
modeled photosynthetic processes which include V(yax) (Houborg et al., 2013). For example, Liu et al. (2023) retrieved
global daily V(max) for C3 biomes by using RS chljear and RS solar-induced chlorophyll fluorescence. Another advantage of
RS chlje,t is that they are linked to space-borne observations of leaf area index (LAI), both retrievable remotely (Croft et al.,
2020). This allows the modeled leaf surface area to be evaluated simultaneously with chljeas.

In this study, we utilized a spatial RS chlj,s product (Croft et al., 2020) to evaluate the chlje,¢ representation of the TBM
QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system) (Thum et al., 2019; Caldararu
et al., 2020), which has fully prognostic coupled carbon and nitrogen cycles. QUINCY includes an explicit representation of
chljear and its impact on photosynthesis, and also the photosynthetic parameters V. (max),25 and the maximum electron transport
rate at 25 °C reference temperature (Jy,ax 25) are directly determined from leaf nitrogen. We analysed model performance with
respect to the temporal and spatial distribution of chlje,r and LAI in different ecosystems globally. We further compared
the simulated gross primary production (GPP) with the ground-based measurement from eddy-covariance network stations.
To understand model-data mismatch, we used a machine learning approach to analyze how different environmental drivers
affect both QUINCY and RS chlje,s. We further investigated whether the observed difference in chlje,¢ between QUINCY and
observations is related to modeled N limitation by examining QUINCY’s leaf C:N values. Here we use RS data as a reference
for evaluation, though we acknowledge that RS data are also simulated product and have different characteristics than in-situ
data. In other words, our evaluation can be understood more as a comparison study between TBM and RS-derived data.

Initial results suggested that the response of chljc,¢ to leaf N was not realistic, foremost because the original leaf nitrogen
scheme in QUINCY does not take into account of the observed relationship between chlorophyll and V(p,ax) (Evans and
Clarke, 2018). In order to have a more realistic representation, we formulated an alternative leaf N allocation scheme in
QUINCY based on Onoda et al. (2017) and Evans and Clarke (2018), where the V(max) and chlorophyll ratio is taken into
account, and compared the additional simulation results with the original leaf N allocation scheme.

The objectives of the study were to determine different methods for using RS chlje,¢ in model evaluation and how RS chlye.¢

can benefit modeling of coupled C and N cycles. The research questions addressed in this work are as follows:
— Are the spatial and temporal patterns of global chljc,¢ in QUINCY and RS similar?
— Is QUINCY’s performance in modeling chlj,¢ related to its ability to produce measured annual GPP?

— What are the main environmental drivers that affect QUINCY chljc.s and RS chljg,f?
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2 Materials and methods

In this section, we will first present the QUINCY model and observational data used in the study, followed by the study sites
and simulation setup. Finally, a machine learning approach to determine chlje,s environmental drivers is presented. In this

study, chlje,¢ denotes both chlorophyll a and b (chl,4p).
2.1 Terrestrial biosphere model QUINCY

We used the terrestrial biosphere model QUINCY (Thum et al., 2019), which includes fully coupled carbon, nitrogen and
phosphorus (P) cycles, as well as water and energy fluxes in ecosystems. Global vegetation ecosystems are classified into
eight categories by plant functional types (PFTs). In addition, there are several acclimation mechanisms that allow a smooth
transition of ecosystem functioning in different climatic conditions. Vegetation is represented as an average individual, which is
characterised by its height and diameter as well as an average individual density, and which includes structural tissues (leaves,
fine roots and fruits, and for trees additionally coarse roots, sapwood and heart-wood) as well as two non-structural pools, labile
and reserve. The canopy is divided into ten layers. The canopy scheme incorporates photosynthesis and canopy conductance
separately for sunlit and shaded leaves for each canopy layer. Photosynthesis is represented using the model by Kull and
Kruijt (1998), and extended to cover C4 plants (Friend et al., 2009). The photosynthesis scheme explicitly considers the role of
chljea¢. This is done by calculating the light-harvesting limited rate of photosynthesis, taking into account the intrinsic quantum
efficiency for CO- uptake and the absorbed radiation of the canopy layers. The photosynthesis incorporates both light-saturated
and non-light-saturated part. The non-light-saturated part is dependent on J .« 25, which is the maximum electron transport
rate at 25 °C reference temperature. The light-saturated part is a dependent on both J;ax 25 and the maximum carboxylation
rate at the 25 °C reference temperature (V(max),25)> both co-limiting the photosynthetic rate. All rates are dependent on leaf
nitrogen content, as described by Friend et al. (2009), Zaehle and Friend (2010), and Thum et al. (2019).

The fast labile pool receives carbon via photosynthetic processes, and nitrogen via root uptake. In this study, phosphorus
dynamics are not accounted for. Nitrogen uptake is a function of fine root biomass, soil inorganic nitrogen (ammonium and
nitrate) and plant N demand. From the labile pool, nitrogen is either transferred to the reserve pool or allocated to tissue growth.
C from the labile pool is used directly for maintenance respiration, which is prioritized over growth. Maintenance respiration is
represented as a linear function of tissue N content for each pool. The C:N ratios of leaves and fine roots respond dynamically
to the balance of C and N in the labile pool. When there is shortage of N supply, the leaf C:N ratio increases and vice versa.
The ratios are constrained to an empirically derived range based on the TRY database (Kattge et al., 2011).

Soil carbon and nitrogen pools are modeled on the basis of the CENTURY soil model (Parton et al., 1993). There are
five organic soil pools: metabolic, structural and woody litter pools, a fast-overturning soil organic matter (SOM) pool and a
slow-overturning SOM pool. There are also inorganic soil pools for ammonium (NHy) and nitrate (NO3). The soil profile is
divided into 15 vertical soil layers, extending to a depth of 9.5 m with increasing depth when moving deeper into the ground.

N uptake via biological nitrogen fixation (BNF) is included, both as an asymbiotic and symbiotic process (Meyerholt et al.,



120

125

130

135

140

145

https://doi.org/10.5194/egusphere-2025-2987
Preprint. Discussion started: 10 July 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

2016). Symbiotic N fixation is calculated taking into account the dynamic trade-off between C and N opportunity costs, based
on Rastetter et al. (2001), Meyerholt et al. (2016) and Kern (2021).

The seasonal development of leaf biomass depends on the ability of the plant to grow new tissues and the fractional allocation
to plant organs. Meteorological conditions and soil moisture are used as phenological controls for LAI development, and it is
assumed that plant growth is zero outside the growing season. Both the beginning and the end of the growing season depend
partly on the PFT. For cold and temperate deciduous and herbaceous PFTs, the start of the season is described as a function
of the accumulated growing degree days. The accumulated growing degree days are calculated from the beginning of the last
dormancy period. In addition, for these PFTs, the end of the growing season is triggered when the weekly air temperature
falls below a PFT-specific threshold. For PFTs of rain-deciduous phenology, the start of the season is triggered when the soil
moisture stress factor exceeds the PFT-specific threshold values. For these PFTs and also for the warm herbaceous PFTs, the
trigger for the end of the season is again the soil moisture stress factor. An additional condition for herbaceous PFTs to end
their growing season is when the weekly carbon balance, i.e. the residual between GPP and maintenance respiration, becomes
negative. The evergreen needle-leaved trees are assumed to be in a continuous growing season. A more detailed description of

QUINCY is presented in Thum et al. (2019).
2.1.1 Original leaf nitrogen allocation in QUINCY

QUINCY allocates the total canopy nitrogen to canopy layers with exponentially decreasing N content towards the bottom of
the canopy as in Niinemets et al. (1998). At the leaf level, nitrogen is partitioned into structural (fxsyuct) and photosynthetic
fractions at each canopy layer (Friend et al., 1997). The photosynthetic fractions are associated with chlorophyll (fxch1), Ru-
bisco (i rub), which is used directly to calculate V(y,ay), and electron transport (fiyer), which is used to calculate the maximum
rate of electron transport (J,ax)-

The fraction of leaf N in the structural compartment for each layer, fy siuct, 1S calculated as a linear function of leaf N, as

presented in Zaehle and Friend (2010):
fN,slruct = kf)mmt - k‘imm * Nieaf (D

where k™ is the PFT-specific maximum fraction of structural leaf N, and k5§t = 7.143 (gN)f1 is the slope of structural
leaf N with respect to total N (/Vje,r) (Friend et al., 1997).
The fraction of leaf N in the chlorophyll compartment, fn o, is calculated as an increasing function of cumulative LAI across

the canopy (LAI.ym) (Kull and Kruijt, 1998; Friend et al., 2009; Zaehle and Friend, 2010):

k(c)hl _ kihlefkf,t'l*LAIcum

2

fNchl =
’ chl
an

where k¢ and k$" are PFT-specific empirical parameters, k;;hl is an empirical parameter describing the increasing fy cn With

n

chl

¢hl — 25.12 molmmol ~* describes the molecular N content of chlorophyll

canopy depth, and LAl is the cumulative LAL a
(Evans, 1989). The k§M and kS parameters are the same for trees and C3 grasslands, but different for C4 grasslands. The rest

of the leaf N is divided between the fy b, and the fx o with a fixed ratio of 1.97 (Wullschleger, 1993).
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2.1.2 Alternative leaf N allocation

In the alternative leaf N allocation scheme, fn b is calculated based on a function of leaf mass per area (LMA) as described by

Onoda et al. (2017). The formulation using the QUINCY PFT-specific LMA values (Thum et al., 2019) is as follows:

—21.1xlog;o(LMA) 4+ 57.5
100 '

3)

fNrub =

The fraction in electron transport, fy e, is derived from fy ryp using the fixed ratio of 1.97. fx opy is then calculated as a function

of fxet, based on the results by Evans and Clarke (2018) :

_ 373 Ky LALun
fNchl = mf&et@ 4
where k, = —0.11 describes the increase in chlje,s Within the canopy depth. The fy s 18 then calculated as the remaining

part of the leaf N, (fNsuuet = 1— fNeht - TNet - TN rub)-
2.2 Site description

We conducted individual site-level QUINCY simulations, and the simulated sites were selected from two datasets. The first
set was the Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evaluation Project
(PLUMBER?) (Ukkola et al., 2022). The second site set, GLOBAL, is based on the study by Caldararu et al. (2022).

PLUMBER?2 (Abramowitz et al., 2024) was designed for serving in a model intercomparison project for land surface mod-
els, and provides CO- flux measurements and meteorological data. Of the available sites, we excluded sites with anomalous
precipitation data (Abramowitz et al., 2024) and other issues, leaving 143 PLUMBER?2 sites. The GLOBAL site set includes
279 sites representing all major climate zones and global biomes for the years 1989-2018 based on the CRU JRA dataset
(Harris, 2020) for which RS chlj.,¢ data were available and matched in land cover type. In total, the combined PLUMBER?2
and GLOBAL analysis included 422 sites. The locations of the PLUMBER?2 and GLOBAL sites are presented in Fig. S1, and
the number of different PFTs in the site sets is listed in Table 1.

In QUINCY, C3 crops and C3 grasslands are grouped as one PFT, i.e. they are simulated with the same parametrization. The
current version of QUINCY does not include management practices. Therefore, C3 crops do not differ from C3 grasslands in
QUINCY simulations. Similarly, boreal and temperate needle-leaved evergreen forests are grouped into the same PFT. In this
study, we labeled those as the needle-leaved evergreen sites with a mean annual temperature below 10 °C as boreal and the

rest as temperate.
2.3 Simulation setup

We ran all the simulations with active C and N cycles, i.e. the CN version of the model. Soil P availability was kept at a

level that did not limit plant uptake or SOM decomposition. The model input fields included half-hourly meteorological data:
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Table 1. List of QUINCY PFTs and the corresponding number of sites in the PLUMBER?2 and GLOBAL sitesets

Abbreviation Long name Nr of sites, PLUMBER?2 | Nr of sites, GLOBAL | Nr of sites, all
BNE Boreal needle-leaved evergreen 20 50 70
TeNE Temperate needle-leaved evergreen 8 6 14
BNS Boreal needle-leaved deciduous 0 6 6
TeBE Temperate broad-leaved evergreen 4 4 8
TeBS Temperate broad-leaved deciduous 25 20 45
TrBR | Tropical broad-leaved rain deciduous 2 2 4
TrBE Tropical broad-leaved evergreen 9 38 47
TeC C3 crops 21 0 21
TeH C3 grasslands 34 69 103
TrH C4 grasslands 20 84 104
all - 143 279 422

shortwave (SW) and longwave radiation, air temperature, precipitation, surface air pressure, relative humidity and wind speed.
In addition, atmospheric CO2, and N and P deposition rates are part of the input drivers. Model input parameters include PFT
classification and various soil properties such as soil texture, bulk density, soil depth, rooting depth and inorganic soil P content.
The specific leaf area (SLA), which is the inverse of LMA, is maintained as a PFT-specific constant. There is only one PFT
associated with each site. The list of PFTs and the corresponding PFT abbreviations are presented in Table 1.

The meteorological fields were obtained from the PLUMBER?2 dataset and the CRU JRA dataset as previously mentioned.
Soil physical and chemical parameters (bulk density, rooting and soil depth and soil texture) were retrieved from the Soil-
Grid dataset (Hengl et al., 2017). Atmospheric CO2 concentrations were retrieved from the Global Carbon Budget 2019 data
(Friedlingstein et al., 2019), and the N deposition data are based on the dataset presented by Lamarque et al. (2010) and
Lamarque et al. (2011).

For each site, we ran a 1000-year model spin-up in order to bring the soil and vegetation biogeochemical pools into quasi-
equilibrium. Atmospheric CO5 concentrations were taken from a randomly selected year between 1901-1930, and meteoro-
logical data were taken from a random year of observed meteorological data. After spin-up, the simulations were conducted
as transient simulations, starting from the year 1901. The transient simulation was carried out with meteorological data taken
from a random year of observed meteorology. This was continued until the year when data from observed meteorology were
available for the respective years. In the transient simulation, atmospheric CO5 concentrations and N deposition were retrieved
for the corresponding years from the data sources mentioned above.

In addition to the simulation with the default QUINCY setup for the PLUMBER?2 and GLOBAL sites, we carried out four
additional simulations for the PLUMBER? sites to analyze how N limitation and changes in leaf nitrogen allocation affect the
results. First, we performed an additional simulation with the QUINCY C-only setup (QUINCY C,y1y), where only the C cycle

was active but the leaf stoichiometry was described with a fixed parametrization. This was done in order to compare the effect
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of N limitation with the results of the default QUINCY CN-simulation. We then conducted a CN-simulation with the alternative
leaf N allocation scheme, as described in Section 2.1.2. After that, we ran a CN-simulation using the default QUINCY settings,
but modified the source code by multiplying the fy 1 parameter by 1.3. This was done in order to see the effect of increasing
fraction of leaf N allocated to chlje,¢. Finally, we carried out a simulation with the alternative leaf N allocation, but the fx rub
was multiplied by 1.3, to represent a 30% increase in the Rubisco fraction, which leads to an increase in the chlje,¢ fraction. The
additional simulations with increased fyp and fyrup Were only performed for the temperate broad-leaved deciduous (TeBS)

sites in the PLUMBER? site set. The list of different simulations is presented in Table S1.
2.4 Remote sensing data
2.4.1 Remotely sensed chljc.¢

We obtained chlje,¢ content from the global RS product by Croft et al. (2020). The RS chlje,s is derived from the ENVISAT
MERIS full-resolution reflectance data with a two-stage radiative transfer model. The spatial resolution of the global RS chljc,¢
is 300 m, and the data are processed to a 7-day temporal resolution for the years 2003—2011. The chlje,¢ has been retrieved by
first modeling the reflectance spectra at the leaf level using two separate models: the 4-Scale model (Chen and Leblanc, 1997)
for forested and spatially clumped ecosystems, and the SAIL model (Verhoef, 1984) for cropland and grassland ecosystems.
The chljear has been then derived from the leaf reflectance spectra by using the PROSPECT leaf optical model (Jacquemoud
and Baret, 1990). A detailed description of the RS chlj.,¢ product is presented in Croft et al. (2020).

In addition, we obtained chlorophyll content data based on the Sentinel-3 OLCI data (Reyes-Mufioz et al., 2022) for two
needle-leaved sites for which we also had in-sifu chlj.,s measurements. The RS chlje,¢ product by Reyes-Mufioz et al. (2022) is
generated by involving Gaussian process regression algorithms, and the training data for the algorithm consisted of simulated
top of atmosphere radiance from coupled canopy radiative transfer model SCOPE and the atmospheric radiative transfer model
6SV. The aim was to further evaluate the magnitude and the seasonality of chlje,s for the needle-leaved evergreen boreal forests
by using data from a different Earth observation instrument and also obtained with a different retrieval algorithm than with RS

chljeat by Croft et al. (2020).
2.4.2 Remotely sensed LAI

We used the GEOV1 remotely-sensed leaf area index (LAI) product from the Copernicus Global Land Service (Baret et al.,
2013), which is the same RS LAI product used to retrieve the RS chlje,r by Croft et al. (2020). GEOV1 LAI is derived from
the SPOT-VGT satellite data and has a temporal resolution of ten days and a spatial resolution of 1 km. We used data for the
years 2003-2011.

2.4.3 Post-processing of the RS data

As RS chlje,¢ depends in part on the assumed land cover (LC) type for each grid cell, it was important to ensure that the

QUINCY chlje,t values for each site represented the same ecosystems as RS chlje,s. We compared the PFT values used in the
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QUINCY simulations with the LC values from a European Space Agency Climate Change initiative (ESA-CCI-LC) LC map
(ESA, 2017), from which the LC types were also taken for the RS chlje,¢ retrieval modeling by Croft et al. (2020). A list of LC
types is presented in Table S2, and the LCs associated with each PFT in our comparison are presented in Table S3. For each
site, we first selected the site grid cell and the eight surrounding grid cells, i.e. the 3x3 cell area, from the ESA-CCI LC map.
We then checked whether the QUINCY PFT matched the LC type for each of the grid cells, and added to a list those grid cells
that had a matching land cover type to the QUINCY PFT. We then picked from the RS chlje,¢ grid data only those listed grid
cells that had a matching land cover type, and calculated an area average RS chlje,¢ based on the listed cells. This area average
was calculated separately for each time step. If there were no matching grid cells in the 3x3 surrounding cells, we extended the
search to cover 5x5 surrounding cells, and looped through 25 grid cells. We then selected the matching cells from the 25 cells,
and calculated the area average RS chlj.,¢ for each time step. There were eight PLUMBER?2 sites and 80 GLOBAL sites for
which we did not find any matching grid cells, and these sites were excluded from the analysis. We only used the top-of-canopy
chljear values from QUINCY to ensure that the values were consistent with the RS-based values. In addition, the RS chljca¢
for the needle-leaved sites was multiplied by 5. This was done to account for the half-hemispherical needle geometry in the
remote sensing retrieval (Stenberg et al., 1995).

The RS LAI data were only retrieved using the one grid cell where the site was located, i.e. the PFT classification of a site
did not affect the RS LAI post-processing. If no data were available in that particular grid cell, we extended the area to cover

40.01° latitude and longitude degrees and used the average of the whole extended area.
2.5 In-situ observations
2.5.1 Eddy covariance flux observations

Ground station GPP observations were available for the PLUMBER? sites, and the data were taken from the eddy covari-
ance flux tower dataset provided by Ukkola et al. (2022). The dataset includes flux tower data from three data releases:
FLUXNET2015 (Pastorello et al., 2020), La Thuile (FLUXNET, 2024), and OzFlux (Isaac et al., 2017). The flux data were
gap-filled using statistical methods depending on the length of the gap. The short gaps up to four hours were gap-filled using
linear interpolation methods. Gaps that were longer than four hours were gap-filled with linear regression against the incoming
SW radiation, air temperature and humidity, or only against the SW radiation if the other two variables were missing. Depend-
ing on the site, the flux time series ranged from one to 20 years, between the years 1992 and 2018 (See Ukkola et al. (2022)

Table S1). Data from all years were used, and therefore, the GPP time series are not from the same time interval as RS chljeyt.
2.5.2 chlicar and leaf C:N in-situ measurements

To investigate the chlj.,s magnitude and seasonal cycle for the evergreen needle-leaved forests, we performed an additional
comparison for RS and QUINCY output with in-sifu observations for two sites: Sodankyld site (FI-Sod) in Finland (67.4
°N, 26.6 °) (Thum et al., 2007) and Niwot Ridge (US-NR1) in the United States (40.033 °N, -105.546°E) (Bowling and

Logan, 2019). Both sites are characterized as needle-leaved forest sites with strong seasonal cycle and harsh winters. FI-Sod is
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classified as boreal forest, and US-NRI1 as subalpine, and is located in a mountainous terrain. The sites were selected as both
sites had a time series of chlj.,¢ observations, and there were also radiation in-situ observations available at FI-Sod.

To determine the chlorophyll content of the crowns in Sodankyli, there were taken in total 160 biweekly needle samples
from the south and north faces of crowns of three mature Scots pine (Pinus sylvestris) trees during 31.3-30.9.2015. Needle
samples were taken separately for one- and three-year-old shoots of branches that were cut with clippers from the upper part
of the crowns. Each sample consisted of four pairs of needles that were immediately immersed in liquid nitrogen in a portable
dewar (CX-100, Taylor Wharton International LL.C, Minnetonka, MN), and subsequently stored at -80 °C until extraction.
Pigments were analysed by using a method following Wellburn (1994) with dimethyl sulfoxide (VWR Chemicals, 23500.322)
as solvent. Frozen needle samples (75—100 mg) were first homogenized for 2 minutes at 30 Hz, using a bead mill (TissueLyser
IT Qiagen, Germany), stainless steel beads (4 mm), and microtubules (2 ml). Subsequently, 1.8 ml of dimethyl sulfoxide was
added to the homogenate and resuspended again at 30 Hz for one minute. Pigments were extracted in oven at 40 °C for 4
hr. The extracts were then centrifuged at 25000 g for five minutes. Light absorption was measured at 649.1, 665.1, and 480.0
nm, with a spectrophotometer (Shimadzu UV-2401 PC), and subsequently used in the estimation of chl A, chl B, and total
carotenoids (Wellburn, 1994). The Sodankyla chlj.,s measurements represent both chlorophyll A and B (chl,1,).

The US-NR1 pigment measurements represent two tree species: lodgepole pine (Pinus contorta) and Engelmann spruce
(Picea engelmannii). The measurements were collected from tree branches and the pigments were extracted in solvent, and
then analyzed by liquid chromatography (Bowling and Logan, 2019). We calculated the daily average value of chlje,s over
measurements from several trees, and filtered out the days when fewer than three samples were available. For FI-Sod, we also
had in-situ measurement data for the fraction of absorbed photosynthetic radiation (fAPAR) for the years 2021-2024 which
were measured with the PQS1 instrument with factory calibration (Knorr et al., 2025). We excluded those days from in-situ
fAPAR measurements for which the 2021-2024 daily mean photosynthetically active radiation (PAR) below canopy was less
than one. This was done in order to filter out measurement data that might not be representative due to reduced sun light and
potential snow cover. We also used in-situ observations from the TRY database (Kattge et al., 2011) to compare the in-situ
leaf C:N ratios with our model-derived values. The leaf C:N observations were retrieved from the TRY database for two sites:
the boreal needle-leaved forest station Hyytidld in Finland (FI-Hyy, 61.8°N, 24.3°E) and the deciduous forest site, Morgan
Monroe State Forest site in the US (US-MMS, 39.3°N, -86.4°E). The FI-Hyy measurements are sampled from Scots pine tree.
US-MMS is a secondary successional broad-leaved forest, and the leaf C:N measurements cover various different deciduous
trees: sugar maple (acer saccharum), American beech (fagus grandifolia), American elm (Ulmus americana), Northern red
oak (Quercus rubra), and other deciduous species. The sites were selected based on consistent measurement time with the
QUINCY simulations, and to expand the geographical gradient of in-situ measurements, and also to include an example of a

TeBS site.
2.6 Feature importance analysis

The impact of different environmental drivers on the simulated and RS chlj.,+ magnitude was examined using the permutation

feature importance algorithm, based on random forest (RF) regression fitting (Breiman, 2001). RF is a regression tree-based
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machine learning method that is able to capture non-linear correlations. Permutation importance indicates the contribution of
an individual input variable to the statistical performance of a model. In other words, permutation importance can be used to
investigate the influence of an environmental driver on a target variable, which in our case is chlje,¢. In addition, we analyzed
the importance of each selected environmental variable via the SHAP (SHapley Additive exPlanations, (Lundberg and Lee,
2017)) values. We used the SciKit Learn Python3 package for both RF and permutation importance (Pedregosa et al., 2011),
and the shap Python library by Lundberg and Lee (2017) (https://github.com/shap/shap; last access June 23, 2025) to compute
the SHAP values.

The target data for the RF models were either QUINCY chljeas or RS chlje,s. We trained 20 separate RF models. Of the 20,
the first nine RFs were dedicated to monthly QUINCY chljc,¢ and each individual PFT. In addition, we trained one RF model
with monthly data from all of the sites and QUINCY chlje,¢, using both PLUMBER?2 and GLOBAL sites. The remaining RF
models were used for monthly RS chlj.,¢ and individual PFTs, and one model with data from all of the sites.

The input data consisted of monthly means of air temperature and PAR, and annual sums of precipitation and N deposition,
and annual means of Standardized Precipitation Evapotranspiration Index (SPEI) at each of the sites. The input variables for
the RF models were selected from the available environmental data that showed the least correlation between each other. Air
temperature, precipitation and N deposition were those used as input in the QUINCY simulations. The SPEI data were retrieved
from the global drought monitoring dataset by Vicente-Serrano et al. (2023). We used the SPEI with a two-week time scale
(SPEI 0.5 months). The spatial resolution of the SPEI dataset was 0.5°x0.5°, and we chose the same time steps as in the
QUINCY data. The PAR radiation was taken from the QUINCY output, and it is converted from SW radiation with the model
(Howell et al., 1983).

The random forest hyperparameters were set to default values, but the maximum number of features per node was set to
three. A recommended value for the maximum number of features per node in RF regression is one-third of the input features
(Hastie et al., 2009), but here we used a slightly higher value in order to maintain representative subset sizes. After training the
RF models, we calculated the corresponding permutation feature importance values for each model. The permutation feature
importance algorithm was used with 30 repeats (n_repeats = 30) and with a fixed random state. Finally, the SHAP values were
calculated using data averaged over three months. The higher positive SHAP values indicate a stronger, increasing effect on

chljeat, and the lower negative SHAP values indicate a decreasing effect on chlje,s compared to the average.
2.7 Data-analysis

In this study, the QUINCY chljc,¢ is the top-of-canopy chlje,¢, as mentioned in Section 2.4.3. We calculated the PFT mean chl,
LAI 90th percentile for GLOBAL and PLUMBERR? sites for both QUINCY and RS. In addition, we calculated the PFT mean
annual GPP for GLOBAL and PLUMBER? sites for QUINCY, but only the PFT mean for the GPP ground observations on the
PLUMBER? sites, as no GPP ground station measurements were available for the GLOBAL (artificial) sites. We used the 90th
percentile of LAI instead of the mean values to reduce the effect of seasonal variation. We calculated the Pearson correlation
coefficients (r) between QUINCY and RS site-level mean chlje,s, LAI 90th percentile and GPP annual sum values, and the

statistical significance of the correlation using Student’s t-test, with a threshold value of 5 % for the statistical significance.
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We analyzed the seasonal cycle of chlje,r, LAl and GPP for one specific site, Hainich in Germany (DE-Hai, 51.08°N,
10.45°E). The Hainich site is located in the middle of a beech forest, and is characterized as a deciduous broad-leaved forest
(TeBS). We also studied the seasonal cycle over all PFTs for the Northern Hemisphere (NH) sites by comparing the monthly
PFT averages of QUINCY chlj,s and RS chlje,s. Tropical broad-leaved evergreen (TrBE) sites did not show detectable sea-
sonality in either QUINCY or RS, and therefore these sites have been omitted from the seasonality analysis. In addition, we
calculated the average values over April, May, October and November for the PLUMBER?2 TeBS NH sites for the QUINCY
results and observations, to study the differences in seasonal development.

We calculated the residuals between the QUINCY chlj,s mean and RS chlje,s for each site, and compared these to the
QUINCY leaf C:N ratios. Leaf C:N can be considered as an indicator of N availability for plants. The aim was to examine
whether the under- or overestimation of QUINCY chlje,s was related to nitrogen limitation in the model. The comparison was
done for BNE, TeH and TeBS. These PFTs were assumed to represent different vegetation types: BNE represents evergreen
forests, TeH grasses and TeBS deciduous forests. In addition, we calculated the mean chlje,¢ interannual variability (IAV) for
the PLUMBER?2 and GLOBAL sites. We first calculated the standard deviation of the annual mean chlj.,¢ for each site, and

then the average of the standard deviations at the PFT level and over all sites.

3 Results
3.1 Evaluation of simulated chljc.¢, LAI and GPP against observations

At the PFT level, QUINCY estimates of the mean annual chlje,s and LAI agree relatively well with the RS-derived chlje,s and
LAI values (Figs. 1, S2, S3 and Tables S4 and S5) for all PLUMBER? sites, with correlations of r = 0.61 for chlje,¢ and r
= 0.51 for LAI (Table S4). QUINCY does overestimate both chlj.,s and LAI for TeBE and TrBR sites, with TeNE and TeC
also overestimated for LAI on a mean PFT scale. Despite the variability in simulated chlj.,s and LAI values in comparison
to RS-derived values, the overall simulated GPP for all PLUMBERR? sites correlates well between QUINCY estimates and
eddy-covariance data (r = 0.71; Table S4 and Figure S4).

As expected, the within PFT variability between sites reveals greater scatter, the nature of which differs for chlje,s and LAI
(Figs. S2, S3). For chlje,¢ in all cases apart from TrBE and TrH, there is a lack of variation in the QUINCY chle,¢, which
present more constant values and smaller dynamic range compared to RS chlje,s values (Fig. S2 and Tables S4, S5). This is
particularly pronounced for TeC and TeH sites, which gives a range of 10-17 pgcm™ for TeC and 4-17 pgcm™2 for TeH,
for QUINCY and a range of 13—46 ug cm™? and 247 pug cm™ for RS respectively. The site-level LAI estimates by constrast
generally present a larger dynamic range (with the exception of TeBs, TeNE, TeBE and TrBE). The TrH in particular show
a large overestimation in QUINCY LAI compared to RS LAI at higher LAI values (LAI > 2.5) (Figure S3). The site-level
GPP results show a good correlation between QUINCY estimates and eddy-covariance observations across PFTs.Whilst the
correlation is generally along the 1:1 line, in 58 % of the PLUMBERR? sites, QUINCY underestimates the GPP on average by
about 400 gC m™2 yr™!. The majority of these underestimations are for BNE and TeBS forests. The QUINCY overestimation
of GPP is mainly for crops and grasslands, with an average overestimation of 384 gCm™ yr™* across 42 % of the PLUMBER2

12
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Figure 1. The PFT mean (a) chljeatr, (b) LAI and (¢) GPP for the PLUMBER?2 sites. The standard deviation is represented by whisker lines.

A 1:1 line is marked with a gray line.

sites. For the PLUMBERR? sites, the slight LAI overestimation of the TrH sites does not seem to lead to an overestimation
of the mean GPP, but the QUINCY PFT mean GPP (756 gCm™2 yr™!) is lower than the PFT mean of the observations (902
gCm™2yr!). Due to very high LAI values for the GLOBAL TrH sites, the QUINCY mean GPP for the GLOBAL TrH sites
was 1461 gCm™2 yr™! (not shown), and QUINCY chl.,; mean was 50.2 ug cm™2.

The QUINCY over- or underestimation in chlje,s did not have a strong, detectable geographical pattern when assessed
together and separately for all PFTs. The residual chlje,s, i.e. the difference between the mean QUINCY and RS values, is
shown in Fig. S5 on a map showing the geographical location of each site. For the C3 grassland sites, the QUINCY mean
chljear was rather small compared to the RS chlje,s. When analyzing the residuals for the C3 grasslands, the northernmost
sites seem to have less negative residuals in magnitude than for the sites around latitudes 30-60°N. This was also the case
when the relative residual was analyzed (not shown). The greater QUINCY underestimation of chlj.,¢ for the warmer, southern
C3 grassland sites is not related to the GPP underestimation. Interestingly, for the GLOBAL C3 grassland sites the LAI
over/underestimation shows an opposite pattern to QUINCY chlje,¢: the northern sites show more negative LAI residual, and
sites around latitudes 30-60°N mostly QUINCY overestimation of LAI (not shown), which could be due to the fact that RS
chlje,s is calculated using RS LAIL

3.1.1 Seasonal cycle

The most visible difference between QUINCY and RS chlj.,¢ seasonality can be observed for the boreal and temperate ever-
green sites (Fig. 2a,b,c,d): QUINCY shows very little variation across seasons, while the RS chlje,¢ indicates more variation

throughout the year.
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Figure 2. PFT-averaged monthly mean chlica¢ for the PLUMBER?2 and GLOBAL Northern Hemisphere sites. Each marker represents the
monthly mean averaged over all sites for each PFT, for RS chlicar (x-axis) and QUINCY chliear (y-axis).

For the BNS and TeBS sites (Fig. 2b,e), QUINCY does contain a seasonal pattern. However, the seasonal cycle in QUINCY
is delayed in the fall compared to RS for BNS and TeBS. QUINCY produces the highest monthly mean chlje,¢ for the summer,
but September is also at the same level. The annual cycle of chlj,s at the Hainich site (Fig. 3) is very similar when com-
paring QUINCY and RS. However, the start of the growing season is delayed in QUINCY, and the simulated LAI increases

385 approximately 20 days later in spring compared to the RS LAI. The delay is even more pronounced for chlje,¢, as the simulated
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Figure 3. The average annual cycle of (a) chlicat, (b) LAI and (c) GPP for the Hainich beech forest (DE-Hai) as a function of the day of year
(DOY). The data are for the years 2003-2011, but excluding the year 2005 data as it was missing from the RS chljea¢. The shaded regions

represent the standard deviation between years.

chlje,s increases approximately 40 days later compared to the RS chlje,s. Similarly, the end of the growing season is delayed
in QUINCY. While the RS LAI shows a decrease throughout the autumn season, QUINCY LAI remains at a high value until
day of year (DOY) 280, which corresponds to mid-October. However, despite the fact that QUINCY chlje,s and LAI remain
higher, their winter level is reached almost at the same time as in the Hainich observations, because the senescence occurs
more rapidly in QUINCY than in the observations. Therefore, the overestimation in GPP is not as pronounced.

Figure 3c shows that the GPP between DOY 90-150 for QUINCY is remarkably lower than in the observations at DE-Hai.
The spring development of GPP is delayed. Although this is partially compensated for by the delayed end of the season where
the QUINCY GPP is higher than the observed GPP after DOY 275, the spring difference makes a larger contribution to the
annual GPP difference of 258 gCm™ yr™!. The mean annual QUINCY GPP is 13394125 gCm™ yr™!, and the observed
FLUXNET GPP is 1597499 ¢C m™2 yr™! between years the 2003-2011 (excluding 2005). In addition, although the simulated

LAI remains at the summer level until DOY ~280, the simulated GPP decreases due to the environmental conditions.
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For the TrH sites (Fig. 2i), the lowest PFT mean for QUINCY is in April, suggesting that the phenological cycle for these
sites needs further tuning in QUINCY. Of the 47 TrH sites in the NH, 74 % of the sites had a higher QUINCY winter (De-
cember, January, February, DJF) chlj.,s average compared to the QUINCY spring (March, April, May, MAM) chlj,s mean.
Furthermore, 55 % of the TrH NH sites were such that the QUINCY DJF means of both chlje,s and LAI were higher than the
QUINCY MAM means. This suggests that the lower QUINCY spring chlj.,s compared rest of the year for TrH sites could be
due to a drought, which reduces LAI. RS chlje,¢ shows the largest TrH averages for summer (JJA) and September, and a fairly
clear seasonal cycle.

The late onset of chlje,r, LAI and GPP, and also the delayed decline in the fall, is distinguishable for the majority of the
PLUMBER?2 temperate deciduous broad-leaved sites (TeBS, Fig. S6). The April and May chljc,¢ values are mostly underesti-
mated by QUINCY for chlje,t, LAI and GPP, while the October and November values are overestimated. For other PFTs, the
monthly QUINCY chlje,r values do not show as clear spring underestimation and fall overestimation relative to RS as TeBS.

The mean IAV of RS chlje,¢ over all PFTs is 4.1143.18 ug cm™, which is much higher than the corresponding value for
QUINCY (1.354+1.52 pg cm™?). The RS chljeas TAV is higher for all other PFTs except for TrH, where the QUINCY chljeas
IAV was 3.3942.04 ug cm™2, and the RS chljeas IAV was 3.3742.35 pg cm™. The largest differences in IAVs between RS and
QUINCY were seen for the evergreen sites. For example, the RS chlje,s IAV for the BNE sites is 5.9543.51, and the QUINCY
chljear AV is 0.5£0.4 pg cm™2,

3.1.2 In-situ comparison of chljc,¢ for two needle-leaved forests

The seasonal cycle of chlje,t, LAI, fAPAR and GPP for Sodankyli is shown in Fig. 4, and the chlj.,¢ values of the US-NR1
site are presented in Fig. S7. The mean annual and seasonal chlje,¢ and GPP values are presented in Table S6.

Figure 4a highlights that the QUINCY chlj.,¢ values are in a range comparable to the in-sifu observations for FI-Sod, but
the QUINCY mean (Table S6) is lower than the annual mean of the in-sifu measurements. On the contrary, the RS chlje.¢ by
Croft et al. (2020) shows much lower values. In addition, the mean of the Sentinel-3 RS chle,¢ is also lower than the in-situ or
QUINCY chljeqas but close to the mean RS chljea¢ by Croft et al. (2020).

The RS LAI in Fig. 4b shows a clear seasonal pattern for FI-Sod, which has a small effect on the RS chlje,¢. The summer
(JJA) average RS chlj,¢ is approximately 10% higher than the winter (DJF) average, which is a relatively small difference
compared to the interannual variability (~ 4ug cm™2). In addition, the late spring RS chljc, s between DOY 100-151 show lower
values than winter or summer. The late spring RS chlj..¢ averages 14.6 ug cm™2, approximately 27% less than the JJA average.
Similar spring decreases in RS chlj,s were also observed for other BNE sites. The Sentinel-3 chlje,r peaks in midsummer, and
also shows a clear seasonal pattern. The in-situ chljeas is slightly higher in late summer (DOY 200-240) compared to spring
and fall.

QUINCY LAI shows a small seasonal variation, which is reflected in the simulated chlje,¢. The winter (December—February,
DJF) QUINCY average is slightly lower than the summer (June—August, JJA) QUINCY average chljas. The in-situ fAPAR
values are in agreement with the simulations during most of the year, but show a stronger seasonal variation than the QUINCY

fAPAR (Fig. 4c), with higher values during winter.
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Figure 4. Seasonal cycle of daily means for FI-Sod (a) chlieat, (b) LAL (c) fAPAR and (d) GPP for QUINCY, remote sensing (RS) and
in-situ measurements. The standard deviation for some of the data series is visualized as a shaded area. The Sentinel-3 chljc.s values for

different years are shown with different colors (2016=white, 2017=yellow, 2018=pink, 2019=orange, 2020=brown).
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QUINCY GPP is in line with the observations until DOY 175, but then decreases until the end of the season (Fig. 4d).
However, the difference in annual GPP is not large, and annual QUINCY GPP is on average approximately 9 % lower than
the in-situ GPP. The difference between observed and simulated GPP after DOY 175 could be due to missing late fall chlje,¢
development or due to too strong response to a drought.

The mean in-situ chlje,s for the US-NRI site was close to the QUINCY chlje,r mean (Fig. S7 and S6). The minimum value
of individual tree samples was 26.8 ug cm™2 and the maximum was 60.8 ug cm™2, i.e. there was variation between individual
samples that is partially minimized by the averaging. The in-situ observations show a slight increase during spring, but the
variation is large due to the small number of samples. The mean in-situ chlje,s for DOY 1-150 is 37.1+6.1 pg cm™2, while the
mean for summertime (JJA) is 43.242.3 pug cm™2. The summer (JJA) QUINCY chlj.,s was close to the annual mean, i.e. there
was no pronounced seasonal cycle. The RS chlj.,s annual mean by Croft et al. (2020) was lower than the annual mean chlje,¢
of in-situ measurements or QUINCY. Interestingly, the RS chlje,s shows a lower JJA mean than the annual mean. Similarly to
the FI-Sod RS chlje,¢, there is a decrease in the spring chlje,s after DOY 100, and the decrease is more pronounced than for
Sodankyl. The minimum value (~16 pg cm™2) of RS chlj.,¢ averaged annual cycle appears around DOY 155, with an increase
after that. For the Sentinel-3 chljc,¢, the mean chlj,s was close to the QUINCY values, although the numerical range was much
wider. The JJA mean for Sentinel-3 is close to the in-sifu observations, and approximately 32 % higher than the QUINCY JJA
chlje,¢. The annual QUINCY GPP was 45 % lower than the observed GPP. In addition, the QUINCY JJA LAI (not shown) was
2.240.1 m? m™2, and was lower than the RS JJA LAI (2.5+0.2 m? m™2, which may partially explain the underestimation of
GPP. Bowling et al. (2018) report that the observed in-situ LAI at the site is 3.8-4.2 m? m™2,

3.2 Nitrogen limitations in QUINCY

Figures 5a-c show the QUINCY leaf C:N ratios and the corresponding QUINCY chlje,¢ values for three PFTs. The TeBS sites
show an almost linear relationship between chlje,s and leaf C:N with a correlation of r = -0.87 (p < 1 x 10~'3). Higher leaf
C:N values indicate lower leaf N levels relative to leaf C. This leads to lower chlje,s since chlje,s is a function of leaf N. The
same nearly linear relationship between QUINCY leaf C:N and decreasing chlje,¢ is seen for the BNE sites (Fig. 5¢) with a
correlation of r = -0.96 (p< 1 x 10~4°). The TeH sites represent a more scattered pattern and the correlation is only r = -0.58
(p < 1x107?), indicating that chlje, is more influenced by other factors than leaf N levels, compared to BNE and TeBS.
However, for the TeH sites, both the QUINCY chlje,¢ and leaf C:N values are in a narrower range compared to the other two
PFTs, which partly affects the comparison.

For the TeBS site, the chlje,s residual is moderately connected to QUINCY leaf C:N values (Fig. 5d), but the same is not
true for the BNE and TeH sites. Especially for the PLUMBER?2 TeBS sites, the chlje,t residual is more negative for the sites
with higher leaf C:N values. The TeH sites do not show much variation in the leaf C:N values, and the chlj,¢ residual does
not appear to be connected to the magnitude of leaf C:N. The 90th percentile of TeH leaf C:N is 35.0, which is 88 % of the
QUINCY maximum leaf C:N. The BNE 90th percentile leaf C:N is 51.1 (78 % of the maximum) and the TeBS 90th percentile
leaf C:N is 28.1 (73 % of the maximum value).
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Figure 5. QUINCY leaf C:N and chljeas and the corresponding residual for (a,d) temperate broad-leaved deciduous (TeBS), (b,e) C3 grass-
land (Teh) and (c,f) boreal needle-leaved sites (BNE). The vertical lines show the QUINCY leaf C:N minimum and maximum limits.

The majority of the GLOBAL BNE sites are clustered in a region with mean QUINCY chly.,¢ around 35-40 pg cm™ and
leaf C:N ratio around 50. The GLOBAL set contains more BNE sites at higher latitudes than the PLUMBER? set (see Fig. S1).
In addition, most (over 83 %) of the PLUMBER2 and GLOBAL sites with leaf C:N ~ 50 are in a region with a mean annual
temperature below 5 °C. The median chlje.s residual for the GLOBAL and PLUMBER? sites is 9.9 ug cm™ and 7.4 ug cm™2,
respectively.

We analyzed whether the chlje,s residual is connected to the GPP residual, i.e. the difference between QUINCY annual
GPP and observed annual GPP (not shown). For the PLUMBER?2 TeBS sites, the largest negative GPP residual, i.e. the model
underestimated GPP, was for those sites that are more N-limited in QUINCY and have a negative chlj,s residual. For the
PLUMBER? TeH sites, the GPP residual was weakly negatively correlated with the chlje,s residual: the largest positive GPP
residual is observed for the sites that have strong negative chlje,s residual. Similarly, the GPP residual for the PLUMBER2
BNE sites was not strongly connected with the chlje,s residual.

We also compared the QUINCY leaf C:N ratios with in-situ measured values for two sites (FI-Hyy and US-MMS) obtained

from the TRY database. This was done to assess whether the QUINCY leaf C:N values are at a realistic level for individual
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Figure 6. GPP residual (QUINCY - observations) versus chlie,s residual (QUINCY - observations) for the PLUMBER?2 TeBS sites. The

QUINCY default scheme results are marked with green circles, and QUINCY alternative N fraction results are marked with beige circles.

sites. US-MMS is classified as a TeBS site and FI-Hyy is classified as a BNE site. For the US-MMS site, the QUINCY average
leaf C:N was 17.3, and the TRY database average was 21.3. The US-MMS QUINCY leaf C:N is close to the lower leaf C:N
threshold, and the QUINCY chly, is underestimated by 27 % compared to RS chlje,¢. For the FI-Hyy site, the values were
46.5 and 38.8, respectively. The QUINCY chlj.,s was underestimated by 28 %, which indicates that for FI-Hyy, there is a
slightly too strong N-deficit modelled.

In order to study the effects of N limitation, we briefly analyzed the QUINCY C,,,j,, simulation results for the PLUMBER?2
BNE sites (not shown). The results revealed that at low chlj.,¢ values, the difference between GPP from QUINCY default,
i.e. CN, and C,,1y simulations was greater than at higher chljeas levels for the BNE. In addition, for the sites where the N

deposition was low, the chlj.,s values were also small.
3.3 Alternative leaf N allocation scheme

Figure 6 shows that the alternative, more realistic N allocation scheme leads, on average, to greater chlj.,¢ and GPP underesti-
mation for the TeBS sites compared to the QUINCY default. Furthermore, the alternative N allocation scheme produces lower
leaf chlieas (14.9+4.4 pug cm™) than the QUINCY default (17.945.6 pg cm™2) for the PLUMBER?2 TeBS sites (Fig. S8 and
Table S7). The corresponding RS chlje,s mean is 22.146.1 pug cm™2. Similarly, the TeBS mean GPP is lower for the alternative
N fraction scheme, 10444311 gC m™ yr™!, while the QUINCY default mean GPP is 12314366 ¢C m™2 yr™!. For the observa-
tions, the mean GPP is 14894375 ¢C m™2 yr™t. The LAI 90th percentile values are in a similar range (~4+1 m? m™2) between
the QUINCY default simulation and QUINCY alternative N allocation. The underestimation of GPP and chlje,¢ is most likely
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due to lower fy rub. While the summer (JJA) fn b for the QUINCY default is on average 0.20 for the PLUMBER?2 TeBS sites,
the corresponding average for the alternative N allocation scheme is 0.09 (not shown).

The results for the other PFTS were similar to those for TeBS: the chlje,r and GPP magnitudes were lower with the alternative
N allocation scheme (Table S7). An exception is the TrH sites, where the annual GPP was higher with the alternative N
allocation than with the default QUINCY scheme. This was due to increased proportions of leaf N in Rubisco and electron
transport, while fx o was decreased and the fy gyuee slightly increased. The PFT mean values for fn gyee and other fractions
were calculated over sites globally, i.e. including the Southern Hemisphere sites. This affects the comparison slightly, as the
seasonal cycles differ between the northern and southern hemispheres.

Increasing chlje,r affects more the QUINCY default chlje,e levels than QUINCY alternative N fraction output, but the
difference is not large (Table S8). When fy ¢y is increased in QUINCY default, the mean chlje,¢ increases by 37.4 %, while
the mean LAI 90th percentile decreases by 2.4 % and the mean annual GPP decreases by 6.3 %. This is due the fact that in
the QUINCY default, increasing fycn decreases leaf N allocated in electron transport and Rubisco, since their fractions of
leaf N are calculated after fx ¢ (see Section 2.1.1). For the alternative N fraction simulations, increasing fn ,, Which leads
to increase in fncn results in different dynamics compared to the QUINCY default scheme. In the alternative N allocation
scheme, increasing fy b resulted in an almost linear response in the chlje,¢ magnitude, with an 24.2 % increase. The increases

in LAI and GPP were more moderate: 5.3 % and 12.1 %, respectively.
3.4 The environmental drivers of chljc.r

Figures 7 and S9 show that when the RF fitting is done over all PFTs, the feature importances are very similar between QUINCY
and RS. Air temperature has the largest impact on the random forest fitting of both QUINCY chljea¢ and RS chlje,¢, when the
fitting is done using data from all PFTs. The effect of air temperature is even larger for the TeH and TeBS sites compared to
the importance calculated over all PFTs. This result is logical, since chlje,s is formed from leaf N, which is partly dependent
on temperature via soil N mineralisation and BNF. The QUINCY BNE sites do not show such a strong dependence on air
temperature because the evergreen needle chlje,s does not vary as much throughout the year as deciduous chlj.,¢. However,
temperature shows a permutation importance of 0.26+0.003 for QUINCY BNE, which is most likely a result of different sites
being in different temperature regimes.

Figure S9 shows that nitrogen deposition is the most dominant driver for evergreen ecosystems for QUINCY chlje,¢. For the
BNE and TeNE sites, the permutation importance values are 0.954-0.007 and 1.7840.054, respectively, and the contribution of
other environmental drivers is smaller. For the RS chljer of BNE sites, N deposition has the highest permutation importance
value (0.8440.012), but the role of N deposition in the RS observations is not as pronounced compared to other variables as
in QUINCY. The RS chlje,r for the TeNE sites is largely driven by temperature (permutation importance = 0.63+0.043). The
grasslands (TeH and TrH) show similar contributions from different variables for QUINCY and RS, although RS chlje,s is
less affected by temperature than QUINCY. There is a difference in the permutation importances for the TeC sites between
QUINCY and RS, as QUINCY chlje,¢ is more influenced by temperature and RS chl.,¢ indicates a slightly mixed effect of

different environmental drivers.
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Figure 7. Permutation importance values based on random forest regression fitting for (a) QUINCY chljea and (b) RS chljeaf, based on data

from all sites, and separately for BNE, TeH, and TeBS sites.

The results of the SHAP analysis (Fig. S10 and S11) are similar to the permutation importance calculations: air temperature

is a dominant driver for both QUINCY and RS. In addition, the SHAP values indicate that warmer temperatures lead to higher

530 than average chlj,¢ values, and colder temperatures lead to lower than average chlj,r values. The SHAP analysis for QUINCY
chljear suggests that the higher PAR values lead to lower chlje,s values, although the majority of the data points are close to
SHAP values of zero, i.e. PAR is not a strong driver of chlj,s compared to, for example, temperature. For the RS chlje,¢, a

similar pattern is not found, but the higher PAR would have an increasing effect on chljcyt.

4 Discussion
535 4.1 QUINCY’s ability to reproduce chljc s magnitude

When analyzed across all sites, QUINCY chlje,¢ correlated well with RS observations and the PFT values were generally in

line with the observations and the simulated PFT-mean values were similar to RS chlje,¢. In particular, the PFT mean chljeas of
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the BNE and TeBS sites was close to the mean RS observations. However, QUINCY generally produced lower variability in
chlje,r between sites compared to RS values. Particularly for C3 grasslands, the QUINCY chlj.,¢ Was restricted to too narrow
a range compared to RS observations. This suggests that QUINCY lacks some processes that cause variation in chlje,¢ values,
and that the QUINCY dynamics for C3 grasses and crops require further in-depth analysis to explain the missing variation. In
addition, the chlje,s QUINCY parameterization for C3 grasslands is the same as for trees, which could affect chlje,¢ dynamics.

The QUINCY annual GPP showed a good correlation with ground station observations, but the QUINCY underestimated the
annual GPP for most of the PLUMBER? sites. This could be partly due to a slightly delayed growing season for the deciduous
forests (Fig. S6), which hinders the early spring carbon sequestration. The delayed seasonal development calls for tuning the
QUINCY phenology parameters, which could benefit the simulations with a reasonable amount of work. However, for some
of the PFTs (TeC, TrBR, TeBE), QUINCY overestimated GPP.

The simulated LAI over all PFTs was in an agreement with RS LAI. However, a clear future development point for QUINCY
is the overestimation of LAI values, which was the case for most of the PFTs. The overestimation of LAI in QUINCY could
be due to, for instance, missing herbivores and management. These effects are currently under development in QUINCY. The
overestimation is pronounced for the C4 grasslands, for which the LAI values in QUINCY were unrealistically high. The very
high LAI values were observed for the GLOBAL sites located on the African and South American continents, for which we did
not have GPP ground station data. However, the QUINCY GPP for the PLUMBER? grassland sites was within a reasonable
range, and the QUINCY PFT mean GPP was close to the observed PFT mean GPP. This suggests that despite high LAI,
QUINCY is able to account for environmental conditions affecting GPP and maintain realistic GPP levels. However, for the
GLOBAL TrH sites, it was observed that if the simulated extremely high LAI values were coupled with high chlje,¢, this
resulted in high simulated GPP in the model. The RS observations could potentially be used in model tuning to balance the
overestimation of both LAI and chljc.¢.

The underestimation of GPP in the Hainich forest (Section 3.1.1) was most likely due to a too low LAI, as the QUINCY
V(max) seemed to be in a reasonable range compared to observations at the site (Legner, 2012; Knohl and Baldocchi, 2008).
The QUINCY JJA LAI value was underestimated compared to RS JJA LAI and also to the values presented by Knohl and
Baldocchi (2008) and Forrester et al. (2016). The delayed seasonal cycle of GPP partly explains the underestimation of the
annual QUINCY GPP at the Hainich site. However, although the simulated LAI showed delayed decline in autumn, the GPP
decreased due to environmental drivers. This indicates that QUINCY is able to maintain reasonable GPP levels in autumn even
when LAI is overestimated.

Although QUINCY tended to overestimate LAl in general, it tended to underestimate LAI for TeBS ecosystems (Fig. S3d and
Table S5). Similarly, the QUINCY mean chlj.,¢ is underestimated at majority of the the TeBS sites. However, when analyzing
the residuals for individual sites, the GPP under- or overestimation was not always related to the chlj,¢ or LAI residual. Less
than half of the 25 PLUMBER?2 TeBS sites showed an underestimation for all chlie,¢, LAI, and GPP. Overestimation of LAI
can lead to too strong shading, which can result in too small GPP in lower canopy layers. In addition, the radiative transfer

model might play a role in the underestimated GPP.
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Furthermore, it was observed that the QUINCY chlje,¢ overestimation was higher for GLOBAL BNE sites than PLUMBER2
BNE sites, and relatively higher portion of GLOBAL BNE sites were located in high latitudes. This suggests that the QUINCY
chlje,r overestimation or RS chlj,s underestimation, is pronounced for the needle-leaved sites in cold regions, which could
partly reflect the challenges of optical remote sensing in high latitudes.

Some of the PLUMBER? sites are located in croplands, fens and wetlands, and these are classified as C3 grasslands in
QUINCY. The model version of QUINCY used in this study does not include wetlands or fens, and therefore for some of
the sites (e.g. FI-Lom in high latitude region) QUINCY does not model the relevant water table depth dynamics, which may
influence the carbon and water dynamics at the sites. Another missing processes in are fertilization and management of crop-
lands. Fertilization and other management practices are not included in the version of QUINCY used in this study, which could
explain the difference in the chlj.,+ numerical ranges between QUINCY and RS. This may affect the comparison of magnitude
and seasonality for C3 cropland sites. Lu et al. (2020) gathered a collection of different chle,¢ in-situ observations distributed
globally. When comparing the QUINCY chlje,¢ values with those reported by Lu et al. (2020), it was observed that C3 crops
and C3 grasslands are most likely underestimated, similarly when compared to the RS chlje,r values. The correlation between
QUINCY chljeas and RS chlje,s was poor for C3 grasslands and C3 crops. This also highlights the need for tuning the QUINCY
parameterization for grasslands, and possibly other changes to the model structure to capture the grassland chlje,s dynamics.

For C4 plants, QUINCY values were in a similar range at the higher values, but lower chlje,s concentrations were missing.
Lu et al. (2020) reported 15-60 ug cm™2, while the QUINCY chljoys range for C4 grasslands was 31-72 ug cm™2. However, it
should be noted that QUINCY chlj.,s values only represent the top of the canopy, while in-situ observations may have mixed
results from different canopy heights, which may affect the comparison.

Our analysis using the more advanced N allocation routine shows that the chlje,; and GPP magnitude for the TeBS sites
were not improved compared to the observation data. This was partly due to lower fy . In the alternative N scheme, fycp is
a function of fx¢ and therefore a function of fx b, and therefore the lower fy yp affects both GPP and chlje,s. The underes-
timation of fx b, could be partly due to the LMA representation in QUINCY. LMA is the inverse of SLA, and thus it is the
same fixed value for all PFTs, which may be too general a representation with respect to the N allocation scheme. On the other
hand, the advanced N allocation scheme provided a more realistic mechanism when fy was increased. This indicates that
the alternative N allocation scheme produces more in line with our current ecophysiological understanding of plant dynamics:
increasing leaf N in chlje,¢ does not decrease other photosynthetic fractions , but more structural part (fN struct)-

Our machine learning based analysis indicated that QUINCY is able to capture the influence of environmental drivers of the
chljg,r in a big picture. QUINCY chlje,¢ for evergreen sites was driven by N deposition, with other environmental variables
contributing less. The same was true for the RS chlje,s for BNE and TrBR, but not for TeNE. Additional comparison of
QUINCY simulations with active C and N cycles with a C,,1y simulation also demonstrated a similar conclusion. Though, the
RS chlje,r for BNE sites seemed to be more temperature-driven than for QUINCY. This could be explained by differences in
the seasonal cycle, as RS chlj.,s shows a seasonal pattern for BNE sites, while QUINCY does not. In addition, it was observed
that QUINCY chlje,¢ for the TeC sites was mainly driven by temperature, while RS chljo,s had more equal contributions from

different variables. In addition, the footprint size of RS chlj.,s may affect the comparison, as crops are typically located in
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a heterogeneous landscape. The analysis with the SHAP values revealed that higher PAR values could produce lower chlje,¢
in QUINCY simulations. The decreasing effect of higher PAR values on QUINCY chlj.,¢ could be partly due to the tropical
regions, where the PAR radiation does not vary as much throughout the year. The decreasing effect could be also attributed to

differences between different sites.
4.2 QUINCY’s ability to reproduce chlj.,r seasonal cycle

The RS chlj,s for BNE forests implied a stronger seasonal cycle than what was seen from in-situ observations at two BNE
sites, which was most likely driven by too strong LAI seasonality of the RS product. Demmig-Adams et al. (2014) reported
that for Korean fir trees, spring chlj.,s was higher than winter, and summer chlje,¢ was slightly higher than winter values. In
addition, the RS observations for the Sodankyli site indicated that there would be a small decrease in spring chlje,¢, which
could be driven by resorption of N to form new needles, or by understory impact during the snow-melt season. The RS chlje.¢
retrieval algorithm does not consider variations in understory, and therefore the understory vegetation can cause artifacts to the
retrieved needle-leaf reflectance signal. Similar effect was observed for the RS chlje,¢ for US-NR1. In addition, the mountainous
landscape surrounding US-NR 1 might affect RS retrieval, which also can create artifacts to the mean RS chljc,¢ after DOY 200.
A study by Zhang et al. (2019), conducted in a laboratory environment, demonstrated a similar decrease for a boreal evergreen
forest.

The in-situ observations in the boreal Sodankyli forest (Fig. 4a) for the year 2015 showed that the chlje,s concentrations
increased throughout the growing season in needle-leaved forests. Similar behavior was reported by Laitinen et al. (2000) and
Katahata et al. (2007). The increase in chlj,¢ could indicate that the Sodankyld forest may be N-limited, and requires strong
N uptake throughout the summer. However, the observations from the Niwot Ridge forest did not show such a strong pattern
(Fig. S7), as also shown by Bowling et al. (2018). The Sentinel-3 chlc,¢ shows the strongest seasonal cycle for the US-NR1
compared to other products used in this study, which could be partly due to assumptions made in the retrieval processing. For
temperate broad-leaved evergreen sites, QUINCY did not simulate seasonal variation in chlje,¢, while RS chlje.s showed a
clear increase in spring and decrease in fall. A study by Yasumura and Ishida (2011) found no seasonal pattern observed for a
broad-leaved evergreen site, while a study by Joshi et al. (2024) concluded that there is a clear seasonal change in chlje,s for

temperate evergreen trees.
4.3 Modeling the N cycle and N limitation

QUINCY is one of the state-of-the art TBMs that includes an advanced representation of chlj,¢ in the canopy, and also the
connection between chlje,s and N limitation. This allows the intercomparison to Earth observation chlje,s products, which
can be further extended to cover analysing the N limitation on photosynthesis and the implications on carbon sequestration
efficiency. In addition, our analysis demonstrated how to use chljc,s as a metric to support analysing the N limitation in
simulations. Though, one needs to keep in mind that the modelled and remotely sensed chlj.,¢ are not completely equivalent,

but there are conceptual differences in spatial coverage, for instance.
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The strongest QUINCY GPP underestimation for the PLUMBER?2 TeBS sites was connected to stronger N-limitation and
QUINCY chlje,t underestimation, suggesting to a too strong modeled N limitation for these sites. However, as Fig. 5d shows,
the leaf C:N values were not close to the maximum leaf C:N values for the TeBS sites, suggesting that the QUINCY maximum
leaf C:N may be slightly too high. In addition, the results in Fig. 5d suggest that for some of the TeBS sites, the QUINCY chlje,¢
underestimation could be due to lower N availability or allocation to leaves. Though, we compared QUINCY leaf C:N values
to the TRY database observation leaf C:N values for two sites, and the QUINCY values were in line with the observations.

The QUINCY underestimation of GPP could also be partly related to modeling deficiencies in the N cycle. The QUINCY
mean symbiotic BNF was ~0.3 gNm~2yr—! for the TeBS sites. Davies-Barnard and Friedlingstein (2020) report that for
deciduous broad-leaved forests, including both tropical and temperate forests, the mean symbiotic BNF is approximately 0.8
gNm~2yr—1, suggesting that QUINCY symbiotic BNF is underestimated for the TeBS sites. However, as discussed in Section
3.2, at least the PLUMBER?2 TeBS sites do not appear to be highly N-limited in QUINCY as the leaf C:N maximum threshold
is not reached. Though, the negative residual between model and observations was higher with the higher leaf C:N values,
indicating that QUINCY s modeled N deficit for the TeBS sites is too strong. The analysis shows that for the TeBS forests, the
chlje,r residual between simulated and RS chlje,¢ brings additional information in pinpointing that the N-deficit influence is
overestimated at the certain sites and contributing to too low GPP.

For the BNE sites, QUINCY overestimated chlje,s compared to RS chlje,s, and the BNE chlj,s and GPP residuals were
not correlating, which may be partly be due to RS chlj.,s magnitude issues as presented in Section 3.1.2. A comparison of
QUINCY CN- and C-only simulations for the BNE sites indicated that QUINCY simulates an N deficit at low chlje,¢ values.
The observed GPP increased as a function of observed chlje,¢, and this was also evident in the simulations. Including the N
cycle in the simulations improved the model behavior and led to a decrease in simulated chlj,s values at the lower end of
the observations and improved model behavior in terms of chlj.,s and GPP. This shows a realistic behavior of the QUINCY
N cycle. Furthermore, the low chlje,¢ values coincided with the low N deposition values, indicating that N deposition plays a
significant role in the N deficit of these ecosystems.

In addition, the TeH leaf C:N values (Fig. 5e) were closer to the upper bound and only approximately half of the leaf C:N
range derived from the TRY database, even if we had sites globally distributed across different climatological regions. This
suggests that many of the TeH sites are more N-limited in QUINCY compared to BNE and TeBS sites, and that QUINCY has
difficulty capturing TeH sites with high leaf N values. This may be a partial cause of the too low and also too static chlje,s
values for the TeH sites. For the TeH sites, QUINCY had the largest overestimation of GPP when the modeled chlje,r is the
most underestimated. This indicates that the leaf N allocation in QUINCY for TeH sites requires further parameter tuning. The
QUINCY dynamics related to N cycling may require further analysis, to estimate the contributions of N deposition and BNF

to leaf N content and whether they are in the range of estimates presented in the reference literature.
4.4 Limitations of the analysis

Although the satellite product by Croft et al. (2020) agrees well with the in-sifu observations (Croft et al., 2020), the satellite

retrieval products contain a certain degree of uncertainty. As Boegh et al. (2013) conclude, satellite inversions are often ill-
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posed inversion problems, which can complicate the retrieval of chlj,s and LAI from remote sensing data. Furthermore, the
coverage of the MERIS satellite data is not optimal for certain regions such as South America, the tropics, western Australia,
and parts of the boreal zone, due to gaps in the original data caused by clouds, sensor errors, or light conditions (Tum et al.,
2016). The influence of gaps has been partially minimized in the RS chlje,s by Croft et al. (2020) by gap-filling the missing
data with the year 2010 data and a smoothing algorithm. In addition, in this study, the impact of gaps has been partially reduced
by using the average of all years.

Our analysis relied primarily on one RS chlj.,¢ product. For example, RS observations from the Sentinel-3 satellite could be
included as it was tested for two sites in this study, although the time periods of the modeled values did not match these obser-
vations. The challenge with Sentinel-3 is that the in-situ observations are often provided years back in time, and Sentinel-3 has
only been operational since 2016. A potential candidate for combination with Sentinel-based chlje,s products could be ICOS
observations. The European ICOS research infrastructure provides up-to-date flux measurements that are also harmonized in
terms of measurement and post-processing techniques.

The remote sensing products of LAI are known to have an overly pronounced seasonal cycle in the boreal needle-leaved
forests, with LAI values being underestimated in winter, early spring and late fall (Heiskanen et al., 2012; Wang et al., 2019).
This is caused by snow and cloud contamination, the understory effects, seasonal variation in needle greenness, low solar
zenith angle and poor illumination (Heiskanen et al., 2012; Fang et al., 2013; Wang et al., 2019). In our study, we observed that
for the Sodankyld BNE forest, RS LAI showed a clear seasonal pattern, while QUINCY LAI was almost constant throughout
the season. We also compared QUINCY fAPAR with in-situ measurements, and this comparison revealed that QUINCY
fAPAR followed the in-situ measurements outside the winter season. The in-situ measurements during the winter season were
influenced by the low elevation angles of the sun, which limits the reliability of the measurements throughout the winter
months and, in mid-winter, results in polar night. Additionally, in late spring, ground-level sensors may be covered by snow,
compromising data quality even when light conditions would otherwise be sufficient. In addition, as Wang et al. (2024) show,
RS-based data often contain inaccuracies in autumn phenology. In our analysis, we used ground-based flux tower observations,
which helped to form a comprehensive view of model performance. Croft et al. (2020) report that the RS chlj,s for the
needle-leaved forests could benefit from intra-PFT variability in the structural parameters (e.g. canopy height, stem density),
which would improve the spatial variability in chlje,¢. The contemporary RS products are advancing in this front, providing
opportunities to improve other RS products. However, the Sentinel-3 product used in this study was not yet free of these
problems.

The flux tower measurements used in this study were not evenly distributed geographically, but rather concentrated in
central Europe and the United States. For example, the number of sites in Central and South America was small, limiting the
comprehensiveness of the analysis of the GPP magnitudes relative to ground observations. TBMs and RS products cover larger
spatial areas, allowing a global assessment even in areas where the in-sifu observations are sparse. In this study, we were able to
first analyze data at sites where we had ground station measurements (PLUMBER?2), and then extend to other regions without

in-situ observations (GLOBAL).
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QUINCY simulations are based on the assumption of an average individual plant or a tree, and do not consider plants of
different ages. Similarly, RS inversion algorithm does not consider variations in, for instance, tree height or crown width. As
previous studies have shown, chlj,¢+ and nitrogen concentrations in leaves can vary between trees of different ages and also
between individuals (Laitinen et al., 2000; Sallas et al., 2003; Warren and Adams, 2001; Thurner et al., 2025). In addition, PFT
can be a very broad category and different tree species may have different characteristics, which is taken into account in our
PFT-based modeling scheme and parameterization. Furthermore, the modeling framework does not account for competition
among plants.

In addition, our analysis does not take into account the potential footprint mismatch between RS chlje,¢ and the flux towers at
the ground stations. Furthermore, the flux tower footprints are not always homogeneous, but represent a mixture of e.g. shrubs
and trees. Our QUINCY modeling scheme assumed only one PFT for each of the sites, which may lead to differences in the
GPP if the flux tower site is located between heterogeneous plant cover. For some sites, we increased the footprint area of the
RS chlje,s to include pixels with the same land cover classification. This increase may have resulted in greater differences in the
footprint compared to the flux tower footprint. Site location, topography, and landscape heterogeneity influence the measured
CO;, fluxes (Giannico et al., 2018; Griebel et al., 2016).

Land cover classification can introduce an additional source of uncertainty in this study. There are two sources of uncertainty
in the use of land cover maps, as they can be caused by the classification into land cover classes based on spectral reflectance
or by the conversion of these land cover classes into the PFT classes that we used (Georgievski and Hagemann, 2019). We have
partially accounted for this uncertainty by increasing the number of points that we used for each of the study sites.

The SHAP value analysis with RF fitting resulted in differing results between QUINCY and RS chlje,s and the impact of
PAR values on chlje,s. Since the SHAP values only describe the machine learning interpretation of the variable relationships,
further investigation of the effect of high PAR values on QUINCY chlje,s would require additional QUINCY simulations where
the radiation input fields are increased, but keeping the rest of the input variables the same.

Our analysis could also benefit from including local measurements of in-situ greenness indices (Linkosalmi et al., 2016)
to further validate the seasonal cycle of chlje,¢ for different PFTs, or up-scaled leaf trait maps (Dechant et al., 2024). For
instance, the up-scaled maps could provide regional, PFT-specific SLA values that could improve the results of the alternative

N allocation scheme.

5 Future directions

One objective of this study was to estimate the gain of using RS chlje,¢ to improve the modeled carbon and nitrogen cycle.
However, the approach in this study is based on only one TBM. Though, our analysis included a comparison of two different
chlje,¢ formulations within a model, which has the advantage that the comparison is not masked out by differences in dynamics
between the two models. As recommended by Meyerholt et al. (2020), a model ensemble would provide more robust results,

as there is some uncertainty in a single process model approach. However, this would be possible only if other TBMs to
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provide chlje,¢ as a diagnostic, which would also allow that chlje,s could potentially be incorporated into TBM benchmarking
platforms, such as ILAMB (Collier et al., 2018).

Another future prospect could be to integrate QUINCY into a digital framework that integrates RS observational time series,
TBMs and a radiative transfer model. Based on a comprehensive literature review, Kooistra et al. (2024) propose that such
a digital twin combination with data assimilation could enable an almost near-time representation of ecosystems and help to

overcome the current modeling limitations.

6 Conclusions

The evaluation revealed that the magnitudes of QUINCY chlj.,¢ correlate well with RS chlj,s when analyzed across all plant
functional types. However, for some of the PFTs, the QUINCY chlj.,¢ values showed less site-to-site variation compared to the
observations. This suggests that the QUINCY parameterization requires further adjustments. RS chlje,¢ for needle-leaved sites
was clearly lower than for QUINCY. The comparison to in-sifu chlje,s measurements indicated that RS chlje,¢ is underestimated
for the boreal coniferous forests, while QUINCY chlj.,s Was in a reasonable magnitude. The inter-comparison of QUINCY and
RS chlje,¢ and LAT seasonal cycles showed that QUINCY produced delayed seasonal pattern for deciduous tress. This suggests
that the phenological parameters of QUINCY need further adjustment. Our analysis highlighted that while QUINCY was able
to produce chlje,r magnitudes in the big picture, the representation of chlje,s in QUINCY calls for further improvement. In
addition, the results from machine learning-based regression indicated that QUINCY and RS chlye,¢ have similar contributions
from different environmental drivers when the analysis was performed over all sites and PFTs.

We also tested an alternative leaf N allocation scheme, which resulted in more realistic ecophysiological behaviour. A
follow-up study with adjusting the parameterization to have a better match with observations, and a larger sample of sites
would provide valuable insights into the benefits of using the alternative N allocation scheme.

Our results reveal that adding chlje,¢ to the model evaluation provides additional information on photosynthetic processes
and leaf N distribution compared to using LAI alone. In this paper, we have demonstrated the applicability of using remotely
sensed chlje,¢ as an evaluation point for TBMs. Our study highlights the potential of the use of RS chlj.,¢ as a model evaluation

tool for analysing the C and N cycles.

Code and data availability. The QUINCY model codes are available under a GPL v3 license. The scientific code of QUINCY relies on
software infrastructure from the MPI-ESM environment, which is subject to the MPI-M License Agreement in its most recent form (https:
/Iwww.bgc-jena.mpg.de/en/bsi/projects/quincy/software), last access: 3 June, 2025). The source code is available online https://doi.org/10.
17871/quincy-model-2019, release 76b2549 (last access: 3 June, 2025), but access is limited to registered users. Readers interested in running
the model should request a username and password via the Git repository. Model users are strongly encouraged to follow the fair-use policy
(https://www.bgc-jena.mpg.de/en/bsi/projects/quincy/software, las access: 3 June, 2025). The QUINCY simulated data used in this study
are available at https://doi.org/10.57707/fmi-b2share.6a3849a7694b4f4a9%efba39abde734af (Miinalainen and Thum, 2025) (Last access: 11
June, 2025). The forcing data to run the QUINCY model are stored in the model repository.
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The global drought monitoring SPEI data is available in https://global-drought-crops.csic.es/#map_name=all_spei_0.5#map_position=
2211 (last access 3 June, 2025).

RS chliear by Croft et al. (2020) will be available by request from the authors.

The Sodankyli chlieas in-situ measurement data is available by request from the authors, and will be published in an open data repository.

The Sodankyld fAPAR measurement data is available by request from the authors, and will be published in an open data repository.

The Sentinel3 RS chliear can be retrieved using the scripts available from here: https:/github.com/psreyes/S3_TOA_GPR_1.git (Last
access: 3 June, 2025)
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